Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Prog Neurobiol ; 230: 102513, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37536482

RESUMO

Angelman Syndrome (AS) is a severe cognitive disorder caused by loss of neuronal expression of the E3 ubiquitin ligase UBE3A. In an AS mouse model, we previously reported a deficit in brain-derived neurotrophic factor (BDNF) signaling, and set out to develop a therapeutic that would restore normal signaling. We demonstrate that CN2097, a peptidomimetic compound that binds postsynaptic density protein-95 (PSD-95), a TrkB associated scaffolding protein, mitigates deficits in PLC-CaMKII and PI3K/mTOR pathways to restore synaptic plasticity and learning. Administration of CN2097 facilitated long-term potentiation (LTP) and corrected paired-pulse ratio. As the BDNF-mTORC1 pathway is critical for inhibition of autophagy, we investigated whether autophagy was disrupted in AS mice. We found aberrantly high autophagic activity attributable to a concomitant decrease in mTORC1 signaling, resulting in decreased levels of synaptic proteins, including Synapsin-1 and Shank3. CN2097 increased mTORC1 activity to normalize autophagy and restore hippocampal synaptic protein levels. Importantly, treatment mitigated cognitive and motor dysfunction. These findings support the use of neurotrophic therapeutics as a valuable approach for treating AS pathology.


Assuntos
Síndrome de Angelman , Peptidomiméticos , Animais , Camundongos , Síndrome de Angelman/tratamento farmacológico , Síndrome de Angelman/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Hipocampo/metabolismo , Potenciação de Longa Duração , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Peptidomiméticos/metabolismo , Fatores de Transcrição/metabolismo
2.
PLoS One ; 17(1): e0261696, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35061720

RESUMO

The Alzheimer's brain is affected by multiple pathophysiological processes, which include a unique, organ-specific form of insulin resistance that begins early in its course. An additional complexity arises from the four-fold risk of Alzheimer's Disease (AD) in type 2 diabetics, however there is no definitive proof of causation. Several strategies to improve brain insulin signaling have been proposed and some have been clinically tested. We report findings on a small allosteric molecule that reverses several indices of insulin insensitivity in both cell culture and in vitro models of AD that emphasize the intracellular accumulation of ß-amyloid (Aßi). PS48, a chlorophenyl pentenoic acid, is an allosteric activator of PDK-1, which is an Akt-kinase in the insulin/PI3K pathway. PS48 was active at 10 nM to 1 µM in restoring normal insulin-dependent Akt activation and in mitigating Aßi peptide toxicity. Synaptic plasticity (LTP) in prefrontal cortical slices from normal rat exposed to Aß oligomers also benefited from PS48. During these experiments, neither overstimulation of PI3K/Akt signaling nor toxic effects on cells was observed. Another neurotoxicity model producing insulin insensitivity, utilizing palmitic acid, also responded to PS48 treatment, thus validating the target and indicating that its therapeutic potential may extend outside of ß-amyloid reliance. The described in vitro and cell based-in vitro coupled enzymatic assay systems proved suitable platforms to screen a preliminary library of new analogs.


Assuntos
Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Insulina/metabolismo , Neurônios/metabolismo , Ácidos Pentanoicos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/antagonistas & inibidores , Regulação Alostérica/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Ratos , Ratos Sprague-Dawley
3.
Sci Rep ; 7(1): 10995, 2017 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-28887487

RESUMO

Brain-derived neurotrophic factor (BDNF), a key player in regulating synaptic strength and learning, is dysregulated following traumatic brain injury (TBI), suggesting that stimulation of BDNF signaling pathways may facilitate functional recovery. This study investigates whether CN2097, a peptidomimetic ligand which targets the synaptic scaffold protein, postsynaptic density protein 95, to enhance downstream signaling of tropomyosin-related kinase B, a receptor for BDNF, can improve neurological function after TBI. Moderate to severe TBI elicits neuroinflammation and c-Jun-N-terminal kinase (JNK) activation, which is associated with memory deficits. Here we demonstrate that CN2097 significantly reduces the post-traumatic synthesis of proinflammatory mediators and inhibits the post-traumatic activation of JNK in a rodent model of TBI. The recordings of field excitatory post-synaptic potentials in the hippocampal CA1 subfield demonstrate that TBI inhibits the expression of long-term potentiation (LTP) evoked by high-frequency stimulation of Schaffer collaterals, and that CN2097 attenuates this LTP impairment. Lastly, we demonstrate that CN2097 significantly improves the complex auditory processing deficits, which are impaired after injury. The multifunctionality of CN2097 strongly suggests that CN2097 could be highly efficacious in targeting complex secondary injury processes resulting from neurotrauma.


Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/reabilitação , Receptor trkB/metabolismo , Animais , Comportamento Animal , Biomarcadores , Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas Traumáticas/fisiopatologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Córtex Cerebral/fisiopatologia , Hipocampo/metabolismo , Hipocampo/patologia , Hipocampo/fisiopatologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Masculino , Aprendizagem em Labirinto , Peptídeos Cíclicos/farmacologia , Ratos , Recuperação de Função Fisiológica
4.
PLoS Biol ; 11(2): e1001478, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23424281

RESUMO

Angelman syndrome (AS) is a neurodevelopment disorder characterized by severe cognitive impairment and a high rate of autism. AS is caused by disrupted neuronal expression of the maternally inherited Ube3A ubiquitin protein ligase, required for the proteasomal degradation of proteins implicated in synaptic plasticity, such as the activity-regulated cytoskeletal-associated protein (Arc/Arg3.1). Mice deficient in maternal Ube3A express elevated levels of Arc in response to synaptic activity, which coincides with severely impaired long-term potentiation (LTP) in the hippocampus and deficits in learning behaviors. In this study, we sought to test whether elevated levels of Arc interfere with brain-derived neurotrophic factor (BDNF) TrkB receptor signaling, which is known to be essential for both the induction and maintenance of LTP. We report that TrkB signaling in the AS mouse is defective, and show that reduction of Arc expression to control levels rescues the signaling deficits. Moreover, the association of the postsynaptic density protein PSD-95 with TrkB is critical for intact BDNF signaling, and elevated levels of Arc were found to impede PSD-95/TrkB association. In Ube3A deficient mice, the BDNF-induced recruitment of PSD-95, as well as PLCγ and Grb2-associated binder 1 (Gab1) with TrkB receptors was attenuated, resulting in reduced activation of PLCγ-α-calcium/calmodulin-dependent protein kinase II (CaMKII) and PI3K-Akt, but leaving the extracellular signal-regulated kinase (Erk) pathway intact. A bridged cyclic peptide (CN2097), shown by nuclear magnetic resonance (NMR) studies to uniquely bind the PDZ1 domain of PSD-95 with high affinity, decreased the interaction of Arc with PSD-95 to restore BDNF-induced TrkB/PSD-95 complex formation, signaling, and facilitate the induction of LTP in AS mice. We propose that the failure of TrkB receptor signaling at synapses in AS is directly linked to elevated levels of Arc associated with PSD-95 and PSD-95 PDZ-ligands may represent a promising approach to reverse cognitive dysfunction.


Assuntos
Síndrome de Angelman/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Guanilato Quinases/metabolismo , Proteínas de Membrana/metabolismo , Receptor trkB/metabolismo , Síndrome de Angelman/genética , Animais , Western Blotting , Fator Neurotrófico Derivado do Encéfalo/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteína 4 Homóloga a Disks-Large , Eletrofisiologia , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Guanilato Quinases/genética , Imuno-Histoquímica , Imunoprecipitação , Potenciação de Longa Duração , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Mutantes , Ligação Proteica , Receptor trkB/genética , Transdução de Sinais , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
5.
J Neurosci ; 31(7): 2481-7, 2011 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-21325515

RESUMO

The primary motor cortex (M1) of the rat contains dopaminergic terminals. The origin of this dopaminergic projection and its functional role for movement are obscure. Other areas of cortex receive dopaminergic projections from the ventral tegmental area (VTA) of the midbrain, and these projections are involved in learning phenomena. We therefore hypothesized that M1 receives a dopaminergic projection from VTA and that this projection mediates the learning of a motor skill by inducing cellular plasticity events in M1. Retrograde tracing from M1 of Long-Evans rats in conjunction with tyrosine hydroxylase immunohistochemistry identified dopaminergic cell bodies in VTA. Electrical stimulation of VTA induced expression of the immediate-early gene c-fos in M1, which was blocked by intracortical injections of D(1) and D(2) antagonists. Destroying VTA dopaminergic neurons prevented the improvements in forelimb reaching seen in controls during daily training. Learning recovered on administration of levodopa into the M1 of VTA-lesioned animals. Lesioning VTA did not affect performance of an already learned skill, hence, left movement execution intact. These findings provide evidence that dopaminergic terminals in M1 originate in VTA, contribute to M1 plasticity, and are necessary for successful motor skill learning. Because VTA dopaminergic neurons are known to signal rewards, the VTA-to-M1 projection is a candidate for relaying reward information that could directly support the encoding of a motor skill within M1.


Assuntos
Condicionamento Operante/fisiologia , Dopamina/metabolismo , Córtex Motor/fisiologia , Destreza Motora/fisiologia , Neurônios/fisiologia , Área Tegmentar Ventral/citologia , Adrenérgicos/toxicidade , Vias Aferentes/efeitos dos fármacos , Vias Aferentes/fisiologia , Amidinas/metabolismo , Animais , Comportamento Animal/fisiologia , Benzazepinas/farmacologia , Condicionamento Operante/efeitos dos fármacos , Antagonistas de Dopamina/farmacologia , Combinação de Medicamentos , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Masculino , Córtex Motor/efeitos dos fármacos , Oxidopamina/toxicidade , Proteínas Proto-Oncogênicas c-fos/metabolismo , Racloprida/farmacologia , Ratos , Ratos Long-Evans , Tempo de Reação/efeitos dos fármacos , Tirosina 3-Mono-Oxigenase/metabolismo , Área Tegmentar Ventral/lesões , Área Tegmentar Ventral/fisiologia
6.
J Neurosci ; 28(22): 5686-90, 2008 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-18509029

RESUMO

Experience-dependent regulation of synaptic strength in the horizontal connections in layer 1 of the primary motor cortex is likely to play an important role in motor learning. Dendritic spines, the primary sites of excitatory synapses in the brain, are known to change shape in response to various experimental stimuli. We used a rat motor learning model to examine connection strength via field recordings in slices and confocal imaging of labeled spines to explore changes induced solely by learning a simple motor task. We report that motor learning increases response size, while transiently occluding long-term potentiation (LTP) and increasing spine width in layer 1. This demonstrates learning-induced changes in behavior, synaptic responses, and structure in the same animal, suggesting that an LTP-like process in the motor cortex mediates the initial learning of a skilled task.


Assuntos
Espinhas Dendríticas/fisiologia , Espinhas Dendríticas/ultraestrutura , Aprendizagem/fisiologia , Córtex Motor/fisiologia , Córtex Motor/ultraestrutura , Plasticidade Neuronal/fisiologia , Aminoácidos , Análise de Variância , Animais , Comportamento Animal , Relação Dose-Resposta à Radiação , Estimulação Elétrica/métodos , Ciclo Estral/fisiologia , Feminino , Técnicas In Vitro , Potenciação de Longa Duração/fisiologia , Potenciação de Longa Duração/efeitos da radiação , Microscopia Confocal/métodos , Destreza Motora/fisiologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...